土豆批发知识

土豆价格2016江西教师招聘数学数形结合思想方法【今日推荐抚州职业培训】

字号+ 作者:围场土豆批发网 来源:网络整理 2016-06-30 14:22

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

我们知道中学数学的基本知识大体可以分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合的思想,围场马铃薯代收,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

根据近几年各地教师招聘考试真题可以发现,数学结合思想在解题中的应用尤为关键,下面就数形结合思想在我们考试中出现的题,比如集合、函数、线性规划、立体几何及解析几何等方面的应用做一个简单的分析。

一、解决集合问题

在集合运算中常常借助于数轴、文氏图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。

例1.已知集合 A=[0,4],B=[-2,3],求A∩B。

分析:对于这两个有限集合,我们可以将它们在数轴上表示出来,就可以很清楚的知道结果。如图1,由图我们不难得出A∩B=[0,3]。

转载请注明出处。

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

相关文章
  • 土豆代收三晋手机报(晚报)2016.04.12

    土豆代收三晋手机报(晚报)2016.04.12

    2016-05-14 12:21

  • 围场土豆教师研究生高等包括研究学报日本条件技术远程培训

    围场土豆教师研究生高等包括研究学报日本条件技术远程培训

    2015-09-21 13:18

  • 土豆批发江西医学院威久2015年博爱全套

    土豆批发江西医学院威久2015年博爱全套

    2015-09-21 11:15

网友点评